Co zrobić gdy auto odmawia posłuszeństwa?

elemencie pomiarowym (kryza, dysza, zwężka Venturiego) inne przepływomierze generujące różnice ciśnień (przepływomierze z krzywizną, przepływomierze piętrzące, przepływomierze kapilarne, przepływomierze dynamometryczne),

Co zrobić gdy auto odmawia posłuszeństwa?

Przepływomierze i ich rodzaje

Często używane są mechaniczne przepływomierze

manometryczne (ciśnieniowe)
zwężkowe ? wykorzystują efekt spadku ciśnienia na elemencie pomiarowym (kryza, dysza, zwężka Venturiego)
inne przepływomierze generujące różnice ciśnień (przepływomierze z krzywizną, przepływomierze piętrzące, przepływomierze kapilarne, przepływomierze dynamometryczne), np. rurka Pitota, rurka Prandtla, mierniki wykorzystujące efekt Coandy
o zmiennym przekroju (rotametry) ? składają się z pływaka umieszczonego w stożkowej rurze. Są nazywane rotametrami od nazwy pierwszego producenta "Rota" (Niemcy)
tachometryczne
turbinowe
komorowe
oscylacyjne
wirowe, np. z wirem precesyjnym
Coriolisa

Popularnymi miernikami przepływu są też przepływomierze

elektromagnetyczne
ultradźwiękowe
termiczne i kalorymetryczne

Źródło: https://pl.wikipedia.org/wiki/Przep%C5%82ywomierz


Silnik diesla - historia

W 1893 roku Rudolf Diesel skonstruował silnik o nieco zmienionej konstrukcji i zasadzie działania, niż silniki spalinowe znane dotychczas. Przyświecającym mu celem było stworzenie maszyny jeszcze wydajniejszej, a opierającej się na ogólnej koncepcji silnika spalinowego. W roku 1893 zdobył patent na swą konstrukcję ?silnika o zapłonie samoczynnym?.

W roku 1897 Rudolf Diesel zbudował pierwszy dwucylindrowy silnik o zapłonie samoczynnym, który otrzymał nagrodę Grand Prix na wystawie w Paryżu. Silnik ten bezpośrednio z wystawy został przewieziony do Warszawy, gdzie był zastosowany do napędu prądnicy w elektrowni hotelu "BRISTOL".potrzebny przypis

Konstrukcja silnika, którą opracował R. Diesel była bardzo zawodna i trudna w eksploatacji poprzez zastosowanie wtrysku paliwa do cylindra za pomocą sprężonego powietrza. Układ wtryskowy wymagał wielostopniowej sprężarki, aby uzyskać wystarczająco wysokie ciśnienie powietrza, za pomocą którego wtryskiwana i rozpylana była dawka paliwa. Przy ówczesnej technologii materiałowej zapewnienie odpowiedniej trwałości i niezawodności sprężarki było trudne, powiększało to gabaryty i ciężar niemałego silnika, oraz zwiększało ilość części ruchomych wymagających okresowego serwisowania. Dopiero opracowanie hydraulicznego systemu wtrysku paliwa (James Mc Kechnie patent w 1910) pozwoliło na szeroki rozwój silników wysokoprężnych pracujących na oleju napędowym, ale już nie według klasycznego obiegu Diesela (stałe ciśnienie spalania), tylko według obiegu Sabathe'a (przemiana izochoryczna i przemiana izobaryczna).

Dużą rolę w rozwoju silnika odegrał inż. Prosper L?Orange zatrudniony w przedsiębiorstwie Benz & Cie, który zaprojektował w 1908 r. komorę wstępną.

Pierwszy pojazd dieslowski produkcji przedsiębiorstwa MAN był jednocylindrowym gigantem o pojemności niemal 20 litrów, który przy prędkości 172 obrotów na minutę rozwijał moc 15 kW.

Źródło: https://pl.wikipedia.org/wiki/Silnik_o_zap%C5%82onie_samoczynnym#Historia


Działanie pompy

W każdym przypadku, by pompa mogła pracować, musi być zalana, co oznacza, że przestrzeń robocza pompy oraz rurociąg ssawny musi być wypełniony cieczą i odpowietrzony w momencie rozruchu pompy. Wyjątkiem od tego są pompy samozasysające. Także niektóre pompy wyporowe, charakteryzujące się wysoką szczelnością oraz umieszczone w układzie pompowym o niewielkiej wysokości ssania są w stanie rozpocząć pracę bez wcześniejszego zalania rurociągu ssawnego.

Pompy charakteryzują następujące parametry:

wydajność (Q) ? mierzona w objętości przepompowywanej cieczy na jednostkę czasu, w układzie SI wyrażona w metrach sześciennych na sekundę;
wysokość podnoszenia lub maksymalne ciśnienie (H) ? mierzone w metrach słupa wody lub w układzie SI w paskalach;
moc (N) ? obliczana jako iloczyn wysokości podnoszenia i wydajności.

Dobór pomp polega na wyborze pompy o parametrach odpowiednich do potrzeb. Pompa powinna tłoczyć objętość cieczy lub osadów odpowiednią do potrzeb (wydajność), gdyż to warunkuje jej efektywne wykorzystanie. Transportowane medium powinno być tłoczone pod stosownym ciśnieniem (wysokość podnoszenia), co zapewnia dostarczenie go do punktu odbioru pod oczekiwanym ciśnieniem. Stąd wniosek, że moc pompy musi być odpowiednio dobrana do pożądanej wydajności i wysokości podnoszenia. Każda pompa ma pewien przedział wydajności i wysokości podnoszenia, w którym może pracować. Jeśli pompuje wodę na maksymalną wysokość, to jej wydajność spadnie i na odwrót. Optymalna wydajność, wysokość podnoszenia i sprawność pomp zależą od rzeczywistych wymogów eksploatacyjnych wynikających ze specyfiki pompowanej cieczy.

Źródło: https://pl.wikipedia.org/wiki/Pompa